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Abstract. We propose constructing provable collision resistant hash functions from expander graphs.
As examples, we investigate two specific families of optimal expander graphs for provable hash function
constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer
respectively. When the hash function is constructed from one of Pizer’s Ramanujan graphs, (the set
of supersingular elliptic curves over F,2 with (-isogenies, £ a prime different from p), then collision
resistance follows from hardness of computing isogenies between supersingular elliptic curves. We esti-
mate the cost per bit to compute these hash functions, and we implement our hash function for several
members of the LPS graph family and give actual timings.

1 Introduction

With the untimely demise of SHA-1, NIST is soliciting proposals for new cryptographic hash functions
to standardize. The goal is to construct an efficiently computable hash function which is collision
resistant. We call it a provable hash if to compute a collision is to solve some other well-known hard
problem such as factoring or discrete log, for example as in the scheme proposed in [4]. We propose
constructing provable cryptographic hash functions from expander graphs. Expander graphs are graphs
in which the neighbor set of any “not too large” subset of vertices contains many new vertices. This
property of expander graphs leads to other interesting properties, one important example being the
rapid mixing of Markov chains on expanders. In our construction the input to the hash function is used
as directions for walking around a graph, and the ending vertex is the output of the hash function.
Our construction can be applied to any expander graph, but we give here two families of optimal
expander graphs, and investigate the efficiency and collision resistance properties of these two families.
The two families are the Ramanujan graphs constructed by Pizer and Lubotzky-Phillips-Sarnak (LPS)
respectively. Ramanujan graphs are optimal expander graphs, in a technical sense (see section 2),
and thus have excellent mixing properties. For these two families, the collision resistance follows from
arithmetic properties of the graphs’ constructions.

When constructing a hash function from the Ramanujan graph of supersingular elliptic curves over
F,> with {-isogenies, £ a prime different from p, as in Pizer ([13]), finding collisions is at least as hard
as computing isogenies between supersingular elliptic curves. This is believed to be a very difficult
problem (see Section 6 below), and the best known algorithm currently known solves the problem in
O(\/i)log2 p) time. Thus we propose to set p to be a 256-bit prime, to get 128 bits of security from the
resulting hash function.

To compute the hash function from Pizer’s graph when £ = 2 requires roughly 2log(p) field multipli-
cations per bit of input to the hash function. This is roughly the same efficiency as a provable hash
based on the ECDLP, and relatively inefficient compared to the provable hash function [4], but our
construction has the advantage that the output of our hash function is log(p) bits, and efficiency may
be improved with optimizations.

Hash functions from LPS graphs are more efficient to compute than those from Pizer’s graphs. Applying
our construction gives a hash function similar to the one proposed by Zémor and Tillich [18], [19].
Finding collisions reduces to a another problem which is also believed to be difficult (see Section 7). To
compute the hash function requires only 7 field multiplications per bit of input, but the field size may
need to be bigger (1024 bit prime p instead of 256 bits, for example), and the output is 4log(p) bits.
We have implemented this hash function for primes of varying size and we give unoptimized timings in
Section 7.



These hash functions may be too inefficient to be applied in all situations, but would be appropriate for
some protocols where a secure hash function is needed and other operations are on the same order of
magnitude. This is the case, for example, for public key cryptographic protocols such as authenticated
key exchange. An important property of our hash functions is that the hard mathematical problem
underlying the collision resistance appears to be independent from other known hard problems such
as factoring and ECDLP (elliptic curve discrete logarithm problem). For the Pizer graph, the hard
mathematical problem is finding an isogeny between two given supersingular elliptic curves, and we
explain in Section 6 how this problem is related to the problem of finding lattice vectors of a given
norm. For the LPS graphs, the underlying hard problem is a representation problem in group theory.

2 Background and Definitions

Hash functions. A hash function maps bit strings of some finite length to bit strings of some fixed
finite length, and must be easy to compute. We are concerned in this paper with unkeyed hash functions
which are collision resistant. Unkeyed hash functions do not require a secret key to compute the output.

Elliptic curves. Let p be a prime greater than 3 and g a power of p. An elliptic curve E over the field
F, of ¢ elements can be given by a Weierstrass equation

E: y2:1:3+am+b, a,belF,,

where the polynomial 2® + az + b has no repeated roots. One adds a “point at infinity” 0z, which,
when the curve is given in projective space as y*z = 2° + azz? + bz®, is the point (0: 1: 0). There is a
group structure on an elliptic curve, given by polynomial equations, such that for every finite extension
F,~ the Fyr-rational points of E, E(Fy) := {(z,v) : y*> = 2® + ax + b2,y € Fyr} U {0g}, are an
abelian group. Given two elliptic curves E1, E» over Fy, a homomorphism f: E1 — FEs is a morphism
of algebraic curves (i.e., a polynomial map) that respect the group laws. A non-zero homomorphism
is called an isogeny. An isogeny is automatically surjective and has a finite kernel whose cardinality is
called the degree of the isogeny. For example, for any positive integer n, the multiplication-by-n map
[n] : E — E is an isogeny of degree n®. If p does not divide n, then ker[n] = (Z/nZ) x (Z/nZ). In
particular, if £ # p is a prime, there are precisely ¢ 4+ 1 subgroups of order £. Another example is the
Frobenius morphism. Let E/F, be given by the equation y*> = z* + ax + b, then the elliptic curve E®
is the curve given by the equation y? = x® + aPx + bP. There is a canonical isogeny Fr : E — E® given
by (z,y) — (2P, y?). The degree of this isogeny is p.

The j-invariant of E is the quantity 172841‘13‘{;%. Two elliptic curves over Iy are isomorphic over a

finite extension Fgr if and only if they have the same j-invariant. Given an element j € Fq, there is an
elliptic curve E over F, with j(E) = j. For example, one may take E': y? =2+ 1723757],:5 + 71722§ﬂ,
(=2 +xif j=1728 and y*> = 2® + 1 if j = 0).

An elliptic curve E over F is called supersingular if for every finite extension F,» there are no point
in E(Fgr) of exact order p. The j-invariants of supersingular elliptic curves are called supersingular

j-invariants. They all lie in F,2, in particular there are finitely many such j-invariants.

For more on elliptic curves and the various characterizations of supersingular elliptic curves see [16].

Expander graphs. Let G = (V,E) be a graph with vertex set V and edge set E. We will deal
with undirected graphs, and say a graph is k-regular if each vertex has k edges coming out of it. An
expander graph with N vertices has expansion constant ¢ > 0 if for any subset U C V of size |U| < %7
the boundary I'(U) of U (which is all neighbors of U minus all elements of U) has size |I'(U)| > c|U].
An alternate definition of the expansion constant requires that for any subset U C V, the boundary
union all elements of U has size satisfying:

\IPU)UU | = min{(1 + )|U], % +1).

It follows from the second definition that any expander graph is connected (see [5] for more background
on expander graphs).



There is also an algebraic way to define the expansion property of a graph. The adjacency matrix of
an undirected graph is symmetric, and therefore all its eigenvalues are real. For a connected graph, G,
the largest eigenvalue is k, and all others are strictly smaller ([5, Lecture 9, Fact 5.6, 5.7]). Order the
eigenvalues as follows:

k>p1>pe > > un—1.

Then the expansion constant ¢ can be expressed in terms of the eigenvalues as follows: ([2])

c> 72(]6_#1).
— 3k —2u

Therefore, the smaller the eigenvalue p1, the better the expansion constant. A theorem of Alon-Boppana
says that for an infinite family X,, of connected, k-regular graphs, with the number of vertices in the
graphs tending to infinity, that lim inf p1 (X;mnm) > 24/k — 1. This motivates the definition of a Ramanujan
graph, a k-regular connected graph which satisfies p1 < 24/k — 1. A family of k-regular Ramanujan
graphs is optimal with respect to the size of 1.

3 Construction of a hash function from an expander graph

The use of expander graphs to produce pseudo-random behaviour is well-known to complexity theorists.
The idea here is to use expander graphs to produce hash functions which are collision-resistant. We
give two examples of such graphs in the following sections.

Roughly speaking, the input to the hash is used as directions for walking around a graph (without
backtracking), and the output of the hash function is the ending vertex of the walk. For a fixed hash
function, the walk starts at a fixed vertex in the given graph. A family of hash functions can be defined
by allowing the starting vertex to vary. We execute a walk on a k-regular expander graph by converting
the input to the hash function to a base-(k — 1) number whose digits then dictate which edge to take
at each step. Starting at the first vertex, each step of the walk chooses an edge emanating from that
vertex to follow to get to the next vertex. At each step in the walk, the choice of the edge to follow is
determined by the next digit of the (converted) input. We do not allow backtracking in the walk, so
only k£ — 1 choices for the next edge are allowed at each step.

A random walk on an expander graph mixes very fast so the output of the hash function will be uniform
provided the input was uniformly random. The output of a random walk on an expander graph with N
vertices tends to the uniform distribution after O(log(V)) steps. More quantitatively: Define a sequence
of random variables X, X1,---, X, where X; is defined to be the label of the vertex at the i-th step
of a random walk on an expander graph on N vertices. Then for every ¢ there is an £ = O( log(1/ 6))
such that for every vertex v

PriX, = o] — —| <6

1"[ = ’U] — N < 0.

The constant implied by the O-notation does not depend on the size of the graph. Thus, the observation
made earlier follows, for instance, by setting § = 1/N2. One can look at [5, Lecture 10, Theorem 6] for
a proof.

4 Pizer’s Ramanujan graphs

We refer the readers to [16, Ch. 3,5] for the relevant background on elliptic curves over finite fields.

The graphs. We first define the family of graphs ([13]). Let p and ¢ be two distinct prime numbers.
Define the graph G(p, ) to have vertex set, V, the set of supersingular elliptic curves over the finite
field F,2. Recall that an elliptic curve over a finite field of characteristic p is supersingular if it has
no p-torsion over any extension field. Elliptic curves which are not supersingular are called ordinary.
The property of being supersingular can be recognized from the Weierstrass equation of the curve [16,
Chapter 5, Thm 4.1] or from its zeta function. Furthermore, supersingular elliptic curves are all defined
over 2.



We label vertices with their j-invariants, which can be computed directly from the curve equation and
are a priori elements of F 2. The number of vertices of G(p, £) is | & | + €, where € € {0, 1,2} depending
on the congruence class of p modulo 12 (loc. cit). Later, we will impose p =1 (mod 12), in which case
€ = 0. Since there are roughly p/12 distinct j-invariants, we will choose a linear congruential function
to map j-invariants from F,2 injectively into F,, for the output of the hash function. Thus the output
of the hash funtion will be just log(p) bits. We propose to use a graph of cryptographic size p ~ 2256

The edge set is as follows: Given a supersingular j-invariant, ji, choose an elliptic curve F; with
j(E1) = 71 and a subgroup Hy C E; of order £. Connect j1 to j2 := j(E2) where E3 is the elliptic curve
E1/H;:. A priori, since there are ¢ + 1 subgroups of order ¢ this gives a directed ¢ 4 1-regular graph.
However, if p =1 mod 12 then the graph can be made into an undirected graph as follows: For each
subgroup Hi C E; of order ¢, there is a canonical choice of subgroup H2 C E5 (of order £) such that

~

Ey/Hy = E;. Thus, we can identity the edges associated to Hi with the edge associated to Ha. For a
more explicit description of the graph (and how to compute it) see below.

The Ramanujan property of this graph follows from the fact that the adjacency matrix (called the
Brandt matrix) gives the action of the 0" Hecke operator on the space of weight 2 cusp forms of

level p. So the bound on the eigenvalues follows from the corresponding result for modular forms (the
Ramanujan-Petersson conjecture proven by Eichler and Shimura in this case).

Walking around the graph. For C' a subgroup of the group of points on an elliptic curve F, Vélu in
[17] gives explicit formulas for determining the equation of the isogeny E — E/C and the Weierstrass
equation of the curve E/C. We give the formulas when ¢ is anodd prime. Let E be given by the equation

y2 +ai1xy +azy = z° + a2x2 + asT + as.
We define the following two functions in F,(E). For Q = (z,y) a point on E — {O}, define

9 (Q) = 322 + 2007 + aq — a1y
9Y(Q) = =2y — a1z — a3,

and set

Qe(C—{0})
w= Y (@@ +=(QHQ).

Qe(Cc—-{0})
Then the curve E/C is given by the equation
Y24+ ALXY 4+ A3Y = X% + Ao X? + Ay X + As
where

A1 = a1, Az = a2, A3 = as,
Ay =aq4 — 5t,A6 = a¢ — (a% =+ 4a2)t — Tw.
From the Weierstrass equation of E/C we can easily determine the j-invariant of E/C. We apply Vélu’s

formulas for subgroups of order ¢, and it is clear that this procedure can be done using O(¥) elliptic
curve operations for each of the £ 4+ 1 groups of order /.



5 Efficiency

Here are the steps to compute the output of the hash function when using supersingular elliptic curves
and 2-isogenies (i.e., £ = 2). Since there are 3 edges emanating from each vertex, and no backtracking
is allowed in a walk, from each vertex, there are two choices of which edge to follow next, and this can
be determined by 1 bit as follows. Start at a vertex E;. Subgroups of E; of order 2 are each given by
a single two-torsion point on the elliptic curve E; : y? = f(x). The 3 non-trivial 2-torsion points are
P; = (x4,0), where the cubic f(x) factors as

(z —z1)(z — z2)(x — x3)

over an extension field of degree at most 2. As an example, when computing the isogeny ¢ which
corresponds to taking the quotient by (Pi), both of the other 2-torsion points are mapped to the
same 2-torsion point ¢(Pa2) = ¢(P3) on the isogenous elliptic curve, E. In turn, the isogeny which
corresponds to taking the quotient of E» by the subgroup generated by ¢(P-) is the dual isogeny ngS
and leads back to Fi. So to choose the next step from Fs, it suffices to choose between the two other
2-torsion subgroups different from (¢(P-)). An efficient way to determine the 2 new 2-torsion points on
E; is to keep #1, the x-coordinate of ¢(P1), and to factor (z — #1) out of the new cubic fao(z), leaving
a quadratic to be factored. The roots of the quadratic can be ordered according to some convention,
and one bit suffices to choose between them for the next step in the walk. So if the input bit length is
n, then the hash function takes a walk of length n steps.

Using the Vélu’s formulas [17] one calculates that if E is given by y? = 2® 4 a4 + as and the 2-torsion
point Q is («, 0) then the elliptic curve E/(Q) can be given by the equation

y® = 2® — (4as + 150°)z + (8as — 140°).

Furthermore, the equation for the isogeny is

A G = A =

So summarizing, each vertex corresponds to an elliptic curve E; given by an equation y? = fi(z), where
fi(x) is a cubic. To compute the 2-torsion subgroups at each step, factor the cubic f;(z). At each step,
calculate the 2-torsion by keeping the image of the other 2-torsion point (not used to quotient by),
and then factoring the quadratic. After ordering, choose which one to quotient by and apply Vélu’s
formulas (field operations in F), or F2).

Cost per bit of input to the hash function:

1. Find the 2-torsion:
a. Apply the isogeny from the previous step to one point: 7 field multiplications.
b. Factor out the linear factor from the cubic f;(z): one field inversion.
c. Factor the quadratic by completing the square and taking a square root: roughly (3/2)log(p)
field multiplications plus a field inversion if p = 3 (mod 4). If p Z 3 mod 4, then one can do this
with 2log p multiplications in a residue ring of F,[z] (Cippola’s method). The construction of the
residue ring requires log p random bits.

2. Order the 2-torsion.

3. Use Vélu to obtain the equation of the next elliptic curve: 9 field multiplications.

In addition, at the first vertex, the cubic defining the curve must be factored, and at the last step,
computing the j-invariant requires several field multiplications and 1 field inversion.

An estimate of total cost can be made by estimating a field inversion as 5 field multiplications (and as
usual not counting field additions). Here we did not distinguish which field multiplications occur in F),
and which occur in F,2, but that is at most a factor of 2 difference. Also, the above is not optimized,
so there may be better ways to do some of the steps.

Summary of efficiency of the hash function under these assumptions: cost per bit in terms of field
multiplications is roughly 2log(p).



6 Collision resistance

Definition. A hash function h is said to be collision resistant if it is computationally infeasible to find
two distinct inputs, x, y, which hash to the same output h(x) = h(y). This property is also called strong
collision resistance.

Definition. A hash function h is said to be preimage resistant if, given any output of h (for which a
corresponding input is not known), it is computationally infeasible to find an input, x, which hashes
to that output. A hash function with this property is also called one way.

We will relate the collision resistance and preimage resistance properties of the hash function to the
following mathematical problems, and then argue why these problems are hard.

Notation: Let h; denote the hash function defined by letting the starting vertex for the walk be the
supersingular elliptic curve F;.

Problem 1. Produce a pair of supersingular elliptic curves over Fo2, Ei and F-, and two distinct
isogenies of degree " between them, fi : E1 — Es, fo: F1 — Fo.

Problem 2. Given E, a supersingular elliptic curve over F,2, find an endomorphism f : E — E of
degree £2" that is not the multiplication by ¢ map.

In the above problems, by the phrase “find an isogeny” we mean a polynomial time procedure that
given a point P evaluates the isogeny at that point.

Theorem 1. Finding a collision in the hash function h; implies a solution to Problem 1 with F1 = E;,
and a solution to Problem 2 with F = E;.

Proof: Finding a collision for a hash function in this family amounts to finding two distinct paths
between two vertices. For the hash function h;, the first vertex Fy = E;. Assuming the hash function
takes inputs of a fixed bit length, the paths must also have the same length. Finding two distinct
paths in the graph from the vertex E1 = F; to the vertex F» allows one to construct two distinct
isogenies ¢1 : E1 — E3 and ¢2 : E1 — Es3, ¢1 # ¢2, via composition of isogenies, where F1 = E; and
E> are supersingular elliptic curves over F,2. Furthermore, the length constraint on the paths implies
that deg ¢1 = deg ¢2, and the fact that the edges of the graph are ¢-isogenies means that the degree
of the two isogenies must be of the same ¢-power degree. Taking the dual of ¢2, we get an isogeny
d;g : F2 — E1. Now ¢ o ¢;2 : E1 — E1 is an endomorphism of the elliptic curve E1 of degree 22" for
some n. This endomorphism cannot be the multiplication by £” map (which also has degree £*™), since
¢2 # ¢1. In other words, a collision also leads to a cycle' of even length in the graph. Thus, explicitly
finding a collision in this hash function allows one to find two isogenies of the same ¢-power degree
between a pair of supersingular elliptic curves, and to find an ¢*"-degree endomorphism of a given
supersingular elliptic curve E = E; = E; that is not the multiplication by ¢ map. In both cases, given
a path or a cycle in the graph one can evaluate the isogeny by composing the isogenies along the path.
Each step of the composition can be done efficiently by evaluating the isogeny via Vélu’s formulas.(]

Problem 3. Given E; and Es, two supersingular elliptic curves over F 2, find an isogeny f : E1 — E»
of degree £™ between them.

Theorem 2. Finding preimages for the hash function h; implies a solution to Problem 3 with F1 = F;.

Proof: Given an output y to the hash function h;, let E2 be the supersingular elliptic curve over I,
whose j-invariant corresponds to y. To find an input z, such that h;(z) = y ,is to find a path in the
graph of ¢-isogenies from F1 = FE; to E». If the hash function takes inputs of length n, then for £ = 2,
the length of the path must be n, and thus the isogeny f must have degree £". For general primes ¢,

the length of the path will be roughly m. d

Remark. Note the following relationships between these problems. As observed in Theorem 1, finding
a collision implies a solution to Problem 1 and a solution to Problem 2. In the opposite direction, if a
solution to Problem 2 is given in “factored” form, then it also implies a solution to Problem 1 and the
ability to produce a collision. That is, if a cycle in the graph is found, written in “factored” form as a

1 We use the term cycle rather loosely here, as we allow a cycle to intersect itself.



sequential list of vertices, it can be used to create two distinct paths between two vertices by following
the cycle in two different directions until the paths meet. The path can be converted into an isogeny
with O(£log?(p)) amount of work at each step. However, if a solution to Problem 1 or 2 is given as an
isogeny or an endomorphism, specified either by a recipe for evaluation or by a subgroup to quotient
by (the size of the subgroup £ would presumably be too large to make this practical), then it is not
clear how to decompose the isogeny or endomorphism into the successive steps in the graph that would
produce a collision. See the paragraph on factoring isogenies below. Note that the same is true for the
equivalence of Problem 3 with preimage finding. If a solution to Problem 3 is given in terms of a path
in the graph, then it can be used to find preimages.

Note also that a solution to Problem 3 implies a solution to Problem 1. This follows from the fact that
a solver for Problem 3 can be used to solve Problem 2 by first taking a random walk on the graph with
endpoints E; and Fs, and then asking the Problem 3-solver for another path between them. If the two
paths are the same, repeat. Since the graph is an expander there are many distinct paths between any
two vertices. The first path was chosen at random, and consequently, the probability that the Problem
3-solver produced the same path is low. Thus with high probability we will get two distinct paths from
E; to E2 and hence get a solution for Problem 1. In other words there is a probabilistic polynomial
time reduction from Problem 1 to Problem 3. This is natural given Theorems 1 and 2, since a preimage
finder can also be used to produce collisions.

A note on factoring isogenies: In the last paragraph we encountered the problem of writing an
isogeny f : Eo — E, of degree {™ as a composition of isogenies ¢y o ¢pp—1 0 ---p1 where degp;, = £.
One might be tempted to use Corollary I11.4.11 of [16] to solve this problem. The result states that an
isogeny f : E — E’ factors as

!
E—>f E
N A
£y

if and only if ker¢ C ker f. For instance, one can use this criterion to find the first step in the
“factorization” of the isogeny as follows: Given f : Eg — E,, f factors as f’ o ¢y iff ker ¢1 C ker f. This
can be checked by taking a point, P (say), that generates the subgroup ker ¢; and checking whether
f(P) is the identity on FE,. Doing this for each of the £ 4+ 1 possibilities for the subgroup ker ¢1 we
can identify the first step of the factorization. A problem arises with this approach if one carries it to
subsequent steps of the factorization. Consider the second step of this process: one needs to check for
each possible isogeny ¢2 : Ehn — FEo, whether ker ¢2 0 ¢1 C ker f. Since deg ¢2 o ¢1 = 52, we know that
ker g2 0 1 C Ep [62] the ¢£2-torsion points on Ey. Furthermore, we know that ker ¢1 C ker ¢2 0 ¢p1. Given
that Eo[(?] = Z/(?Z x Z/#*7Z, this means we have to find a P € Fy[¢?] of exact order £2 such that ¢ (P)
lies in ker ¢2. Continuing this way, one would need to find points P in Ejy [Zk] of exact order £*. The
problem is that such points in Ejy [Zk] are defined over large degree extensions of the field that FEy is

defined over. In general, this degree could be as large as £* and the finite field would have pek elements.
Thus, even if f is of degree £™ where n is O(logp) this approach becomes infeasible. As a consequence,
obtaining a converse to Theorem 1 (turning a solution to Problem 1 or 2 into a procedure for finding
hash collisions) seems unlikely.

Hardness of Problem 3 (Preimage resistance)

Since walks on an optimal expander graph quickly approximate the uniform distribution, we can argue
heuristically that a Pollard-rho type attack on Problem 3 would succeed in time proportional to the
square-root of the graph size, i.e. for the graph G(p, £), in time O(\/p?log2 p). Such an attack would not
always find a path of the correct length, however. This appears to be the best attack known on any of
these problems.

Problem 3 was introduced in [8], where it was argued that the problem is hard in both the ordinary and
the supersingular cases. In [8], Galbraith gives an algorithm to find an isogeny between two given ordi-
nary, isogenous elliptic curves which runs in time O(p®/? log(p)) assuming the Riemann hypothesis for
imaginary quadratic fields. He notes that a similar algorithm to solve the same problem for supersingu-
lar elliptic curves runs in time O(plog(p)). The ordinary case can also be described in another language



as solving a discrete log problem in orders of class groups of imaginary quadratic number fields, which
has been well-studied. Although subexponential index calculus methods apply ([9]), taking quadratic
orders with large discriminant makes the problem as hard as factoring integers of that size ([10]). Note
the difference between the ECDLP situation and here: problems on supersingular elliptic curves are not
necessarily easier than the corresponding problem on ordinary elliptic curves. In fact, for our problem,
there is no class group to work in for the supersingular case, and the degree map is a rank 4 quadratic
form instead of rank 2 (see the Hardness of Problem 1).

Hardness of Problems 1 and 2 (Collision resistance)
To find a cycle in the graph is to solve Problem 2, so first of all, we will ensure that our graph has no
short cycles (i.e. has large girth). We will put restrictions on the congruence class of the prime p to
ensure that there are no short cycles in the graph as follows.

Translation into the language of quadratic forms. The problem of finding isogenies can be
translated into the language of representation of numbers by quadratic forms. As explained in the
proof of Theorem 1, finding two distinct isogenies ¢1, ¢2 between two elliptic curves E; and Fo of
degree £™ leads to an endomorphism of degree £*" of E; that is not the multiplication by " map. The
degree map is a rank 4 positive definite quadratic form, which can also be described as the Norm map
on a maximal order in a quaternion algebra. The endomorphism ring (over IF,,) of a supersingular elliptic
curve is isomorphic to a maximal order in the quaternion algebra B = B, o over (Q ramified only at p
and oo ([16, Chapter 5, Theorem 3.1]). The maximal order is a rank 4 Z—lattice. The existence of an
endomorphism of degree £2" implies the existence of a non-trivial representation (i.e., not as the norm
of £™) of the number £2" by the quadratic form that is the norm form on the lattice. Note though, that
the best known algorithms for determining the endomorphism ring of a supersingular elliptic curve as
a maximal order in B are exponential in p ([3]). Thus the process of translating the problem of finding
cycles to the language of quadratic forms seems to be computationally hard in itself.

Ensuring that G, has no small cycles. We can use the machinery introduced above to efficiently
find cases where G(p,£) has no small cycles. By choosing p carefully relative to ¢ we can ensure that
there are no cycles of length n for n in a given interval [0, S]. A non-trivial cycle of length 2n in the
graph of ¢-isogenies implies that the norm form of some maximal order in B represents £*" in a non-
trivial way. If the cycle corresponds to an element x of norm ¢*" then that implies that the quadratic
polynomial X? — Tr(z)X + Norm(z) is irreducible, and so that p is ramified or inert in the field defined
by the polynomial. To illustrate this, take £ = 2 and n = 1. Then we consider X? — Tr(z)X + 4.
Since b® — 4ac < 0, the trace must satisfy Tr(z) € {—3,—2,—1,0,1,2,3}, so the field determined by
the polynomial is Q(v/—1), Q(v/=3), Q(+/=7), or Q(v/—15). One then just needs to make sure p splits
in all these fields, which by quadratic reciprocity is a congruence condition. So in this example it is
enough that p =1 (mod 4), p=1 (mod 3), p=1 (mod 7), and p =1 (mod 5), so if p is congruent to
1 modulo 3-4-5-7 =420 then there are no cycles of length 2. This idea can be applied in general to
make sure there are no short cycles in the graph.

Choosing an appropriate starting vertex. One can apply the idea in the previous paragraph in
a different way to exclude short cycles by choosing ¢, p and the starting vertex carefully. We illustrate
this when p =3 mod 4 for ease of exposition even though we restrict to the case where p =1 mod 12
for our construction. Proposition 5.2 of [12] then tells us that one maximal order, m (say) in By o has
Z-basis given by

(e +k), 2,k

1 1
1 _
+J),2

5
where 1> = —1, > = —pand 1y = —p = k. Let £ = 3 mod 4 and take a supersingular elliptic curve £
that has End(F) = m as the starting vertex of the walk in the hash function. Now there is a cycle of
length 2t starting from F in the graph G(p, ¢) iff there is an endormorphism z € m such that N(z) = £*
(here N(z) is the norm of ). Suppose z = a3(1 + j) + bi (2 + k) + ¢y + dk, where a,b,c,d € Z then its
norm

2

N a a 2 b? d b\?



Suppose N(z) = £ (% + c) =0 and (% + d) = 0, this would mean that

a®> b

— 2t
4

This implies that a and b are even and that £2° = 72 + 52, for some integers r and s. Since £ =3 mod 4
the only way ¢3! can be written as the sum of two squares is (:I:Et)2 +0% and 0% + (:tﬁt)2. Thus we must
have s = 0 and r = ££* or the other way around. Thus the only endomorphisms of norm ¢?* are the
trivial ones, multiplication by +¢* or multiplication by +£* composed with the automorphism s, provided
our assumption that (% + c) =0 and (g + d) = 0 was true. Hence any non-trivial endomorphisms must
violate this assumption. If z = a3 (1+7)+b (1+k)+cy+dk is such that either (£ + ¢) # 0or (2 +d) #0,
then N(z) > 2. Thus if N(z) = ¢** then we must have ¢t > 1log,(p/4). If £ is fixed, this gives us a
lower bound of 2(logp) for the size of the smallest cycle starting from the vertex E. This gives a lower
bound of %\/13 for the degree of any non-trivial endomorphism. Next, we give some reasons why we
believe that finding such high degree endomorphisms is a hard problem.

We illustrate another example by looking at the case when p =1 mod 8. Here we have one maximal
order, m (say) in Bp o whose Z-basis is given by (see Proposition 5.2 of [12])

1 1 1
5(1 +7), §(Z+ k), 5(]+ak),k

where 1> = —1,72 = —p, ¢ = 3 mod 4 is a prime such that (g) = —1 and a is an integer such

that q|(a2p +1). Let ¢ = 3 mod 4 be a small prime and then pick a prime p = 1 mod 24 such that

(%) = —1. We claim that the graph G(p,¥¢) for £ = 3 mod 4 cannot have small cycles starting from

any vertex representing a supersingular elliptic curve with endomorphism ring m. Indeed, a cycle of
length 2t gives rise to an endomorphism « of E whose norm is £2. This means that if z = Z(1 + 7) +

2
s+ k) + é(] + ak) + uk (where r,s,t,u € Z), then its quarternionic norm

r2 g2 rt\? s ta 2
N(m):ZJrZer(iJrg) +p(§+;+U> =7,

Suppose (% + é) =0 and (% + %a + u) =0 then /* = % + %, but £ = 3 mod 4 all such endomor-

phisms are the trivial ones coming from multiplication by £° or #£" (recall that 2 is an automorphism).

Thus, we must have either (% + é) # 0 or (% + %" +u) # 0. In either case, N(z) > ﬁp. Thus
t > log, p if q is fixed. This means that there are no non-trivial endomorphisms of degree < ﬁp. Thus
finding such high degree endomorphisms is likely to be hard.

If the graph G(p,£) does not have small cycles then the best known attack is the Pollard-rho attack
which will find a cycle in expected time O(y/plog®p). Thus taking p =~ 2*°° would give roughly 128
bits of security against this attack.

Timings for the Hash function based on the Pizer graph. We implemented our hash function to
find the actual performance of the hash function. Our results are given below. For a prime p of 192-bits
and £ = 2, the time per step of the walk (which is also the time per input bit) is 3.9 x 107° secs. This
translates to a hashing bandwidth of about 25.6 Kbps. For a prime p of 256-bits, the time per input
bit is 7.6 x 107° secs or 13.1 Kbps. The implementation was done in C, and the computer on which
the timings were taken was an 64-bit AMD Opteron 252 2.6Ghz machine.

7 LPS Ramanujan graphs

An alternative to using the graph G(p, ) is to use the Lubotzky-Phillips-Sarnak expander graph ([11]).
We describe that graph below. Let £ and p be two distinct primes, with £ a small prime and p relatively
large. We also assume that p and £ are such that £ =1 (mod 4) and £ is a quadratic residue (mod p)
(this is the case if (P02 =1 (mod p)). We denote the LPS graph, with parameters ¢ and p, by Xg,p.
We define the vertices and edges that make up the graph X , next. The vertices of X, are the matrices



in PSL(2,F,), i.e. the invertible 2 x 2 matrices with entries in F, that have determinant 1 together
with the equivalence relation A = —A for any matrix A. Given a 2 x 2 matrix A with determinant 1,
our name for the vertex will be the 4-tuple of entries of A or those of —A depending on which is
lexicographically smaller in the usual ordering of the set {0,...,p — 1}4. We describe the edges that
make up the graph next. A matrix A is connected to the matrices gA where the g’s are the following
explicitly defined matrices. Let i be an integer satisfying i = —1 (mod p). There are exactly 8(¢ + 1)
solutions (go, g1, 92, 93) to the equation

g0 +9gi+95+g3 ="

Among these there are exactly £+ 1 with go > 0 and odd and g; even for j = 1,2,3. To each such
(g0, 91, g2, g3) we associate the matrix

g= go +1ig1 g2 +1igs3
—g2 +193 go —ig1)

This gives us a set S of £ 4+ 1 matrices in PGL(2,F,), but their determinants are squares modulo p
and hence they lie in the index 2 subgroup of PGL(2,F,) namely, PSL(2,F},). It is a fact that if g is
in S then so is ¢~ *. Furthermore, since £ is small, the set of matrices in S can be found by exhaustive
search very quickly. The graph X, , has p(p®> — 1)/2 vertices and is £ + 1-regular.

This is an example of a Cayley graph. Given a group G and a subset G1 C G (normally a generating
set) one constructs a graph whose nodes are the elements of G and for every g € G1 the nodes z,y
have an edge corresponding to g if © = gy or y = gx. This graph is related to the graphs proposed in
the construction of hash functions by Zémor and Tillich [19], with a different choice for the set G1 (see
Section 9 below).

Collision resistance. Finding a collision is equivalent to explicitly calculating the product of gener-
ators giving a cycle on the graph. In Sarnak, ([15, §3.4.1]), one finds that the calculation of the girth
amounts to finding the minimal ¢ such that £' is represented by the quadratic form

9o +4p°g1 +4p°gs + 4p°g3

subject to the condition that at least one of g1, g2, g3 is not zero. The argument there shows that ¢t >
2log, p. Thus the girth of the LPS graph is at least 21log, p. Since finding the minimal cycle as a product
solves the representability problem in O(t) operations and provides an explicit solution, the problem of
calculating the minimal cycle cannot be easier than the representability problem, which is considered
hard. We remark (loc. cit. §3.3) that the girth of the LPS graph is essentially optimal; for example, it
is larger than the girth of a random graph, and in loc. cit. is claimed to be the (asymptotically) largest
known. Thus, one does not expect the problem of finding a shortest cycle in the LPS graphs to be
easier than the problem for a general homogeneous ¢-regular graph, which is widely agreed to be hard.
To support this, the arguments sketched in ([19] §2.3) to argue that it is hard to find collisions for their
hash function also apply to our construction with the LPS graph.

Timings for the hash function based on the LPS graphs. Our implementation of the hash
function based on the LPS graph (with £ = 5) takes 1.6 x 10~ seconds per step of the walk for a prime
p of 1024-bits. At each step of the walk log, ¢ bits of the input are consumed and so this translates to
a hashing bandwidth of % ~ 145 Kbps. The machine running the code was the same as before.
One disadvantage seems to be that 4 elements of F,, take 4logp bits to represent, and if logp is about
1024, then the output size is too long. For a 192-bit prime p, one step of the walk requires 1.04 x 10~°
seconds. In terms of bandwidth this is about 2.23 Mbps (again with ¢ = 5). More generally, one step of
the walk on this graph costs 8 field multiplications (or 7 if we use Strassen’s method), so estimating the
time required to do a field multiplication as « gives a direct estimate of the time required to compute
the hash per bit of input as 108;2‘ 7- One can decrease the computational cost per bit at the expense of
storing a larger table (of size £ + 1) of generators for the graph. But, if the table is too large then one
will have to account for the memory access cost in the analysis.
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8 Generic attacks on expander graph based hash functions

Our purpose in this section is to explain a certain generic method of attacks on the collision resistance
property of hash functions constructed out of expander graphs in the manner discussed in this paper.
Let G be a connected graph and let w = (vo; E1, E2, ..., E,) be a walk in G, with initial vertex vo and
edges F;. Let v, denote the vertex where the walk terminates. Let f be an automorphism of the graph
G. We assume that an adversary A knows f and that the computation of f on any vertex and edge
is “fast”. Thus, applying f, A can easily find f(w) = (f(v); f(E1),..., f(Exn)). If, on the average, the
distance in G between v and f(v) is small enough then A is likely to find a walk w,,, r(v,) between vg
and f(vo) and a walk w,,, ¢(v,) between v, and f(v,) by brute force search. The walks (wey,, f(vo)|f(w))
and (w|wy,,,f(v,))) are two walks of the same length with the same initial and final vertices. Thus
A can find two different inputs to the hash function hashing to the same value. Alternately, the walk
(Wog, £ (wo) | F (W) f(Wy,,, £ (v,))) Tepresents another input (of different length, usually) hashing to the same
value as w. We call such an attack a generic attack.

One can easily provide examples of good expanders with an involution f such that the distance between
any v and f(v) is one. Indeed, given a good expander graph H = (Vg, En) let G = (Vg, Eg) be its
extended double cover: if Vg = {v1,...,v,} then Vo = {z1,...,Zn,¥1,...,yn} and z;,y; are adjacent
if i = j, or v;v; € Eg. This is a connected graph with the involution f(x;) = ys.

We next discuss our examples of the supersingular graphs and the LPS graphs and explain why the
generic attack method fails.

Supersingular graphs. Let p,¢ be primes, £ = 1 mod 12, and G = G(p,¥) be the supersingular
graph as in section 4. The only obvious automorphism of G we have is the Frobenius automorphism
Fr, sending a supersingular j-invariant ji to j7. It also acts on the edges: if H is a subgroup of order ¢
of a supersingular elliptic curve E1 with j(E1) = j1 then Fr(H) is a subgroup of order ¢ of Eim. The
number of fixed points of F'r is the number of supersingular j-invariants defined over F,, whose order
of magnitude is the class number of Q(\/—p), which is asymptotically /p if p = 3 mod 4 and 2,/p
otherwise. More generally, we have the following lemma.

Lemma. Let ¢ be a non-negative integer. The number «(i) of supersingular j-invariants such that
diste(4,57) < ¢ is the number of pairs (E, g) consisting of a supersingular elliptic curve F and an
endomorphism g of E or degree p¢’, j <4, up to isomorphism. Assume that j < log,(p/4) then

a(i) = £20(/p).
Proof: Given an isogeny h: E® — E of degree ¢/, j < i, let g = Fr o h be the endomorphism of F

of degree p - deg(g). Conversely, an endomorphism g of order pf?,j < i can be factored uniquely as a
composition, up to automorphisms,
J ey QN o}

where the order of h is 7. We note that to give a pair (E,g) is equivalent to giving a supersingular
elliptic curve E and an embedding of the ring O, ; := Z[z]/(2® + az + pt?) — End(E). For such an
embedding to exist we must have that p does not split in the quotient field K, ; of O, ; and that K, ;
is a quadratic imaginary field. Since we have z? + az+p#/ = z(z+a) mod p, for p not to split we must
have p|a, while the second condition is simply that a® < 4pf?. Note that if 467 < p, as we now assume,
this forces a to be zero. Thus, we need to consider pairs consisting a supersingular elliptic curve and
an embedding O; := Op,; = Z[z]/(z* + p¢’) — End(F). Each such embedding extends to an optimal
embedding of a unique order of K; := Q(y/—p#’) into End(E). To fix ideas, assume p = 1 mod 4.
Then each such order is of the form Os with s < j and s =j mod 2. It is well known that the number
of such embeddings is the class number of Os and this, in turn, is 63/20(\/13). Thus, we get the estimate

that a(q) is (32 €072/2)0(/p) = £/20(,/p). O
The lemma implies that to have that the distance between two randomly chosen supersingular elliptic
curves is less than i, with probability greater than some constant independent of p and ¢, one must

take i close to the limit posed in the lemma, i.e. log,(p/4), and this is essentially the diameter of G.
This shows that the generic attack using the Frobenius automorphism fails.
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LPS graphs. The LPS graphs, defined in section 7 are Cayley graphs. Let C(G,S) be the Cayley
graph of a group G relative to a symmetric set of generators S of G, such that 1¢ € S. Recall that the
vertices of the graph are the elements of G and that we connect g to gs if s € S. The graph C(G, S) is a
simple regular connected graph. The group G acts as automorphisms of C(G, S). Given z € G we have
an automorphism [z] of C(G, S) such that [z](g) = zg. Note that if g is connected to gs then [z](g) is
connected to [z](gs). The Cayley graph could have other automorphisms. Indeed, any automorphism
¢ of G such that ¢(S) = S induces an automorphism of C(G,.S). Those, however, will not be studied
here.

Let  # 1g. Then [z] has no fixed points. Suppose that for some g € G, dist(g, [z]g) = n, where the
distance is the minimal length of a walk in C(G, S) starting at g and ending in xg. Thus, there are

elements s1, s2,...,8, of S such that xg = gsi1s2---s,. Then z = gsis2. ..sngfl. Assume that also
x = hsi182...s5,h~ " then h € gCentg(sy - s,), and vice versa. Note that this condition on h depends
only on the product s1s2 - - - s, and not on the particular choice of elements s1, s2, ..., s,. We conclude

that following:
t{g € G : dist(g, [z]g) <n} = > fCent (y),

{yeG:1dist(1g,y)<n,z~y}

where we used the notation z ~ y to indicate that z is conjugate to y. Let £ denote the conjugacy
class of z in G. Since conjugacy is an equivalence relation, we conclude that

#{g € G : dist(g, [z]g) < n} = Z fCent(x).

{yezC:1<dist(1g,y)<n}

Remark that fz@ - fCent(z) = #G and so the essential point is how are the lengths of the elements in
z% (relative to the Cayley graph) are distributed. This is an interesting question in general. Here we
just note that if G is k regular then there are at most k- (k—1)""" elements whose distance from 1¢ is
not larger than n. In fact, since our interest is in good expanders, we are justified in assuming a worst
case scenario.

We now specialize our considerations to the group PSL2(F,). The centralizer of a non-central element
in SL2(FFp) is roughly of size p and is at most of size p+ 1 (that element generate in M2(F,) a quadratic
algebra over F, isomorphic to F,2,F, & F, or Fy[e]/(€%)). Up to a factor of 2, this is also the size of the
centralizer in PSLa(Fp). Thus, for 1 # x € PSL2(F,) the number of vertices g such that the distance in
the LPS graph (relative to £ and p) between g and [x]g is less than n is at most (p+1)(£41)£" " ~ p™,
while the number of vertices is (p3 —p)/2. We see that in order to have that the probability of picking
an element ¢ such that dist(g, [z]g) < n exceed some constant, we must choose n to be about 2log,(p),
which is essentially the lower bound one has on the girth of the LPS graph. Again, we find that the
generic attack method fails.

9 Related work

A proposal for using the hardness of lattice reduction problems can be found in the trapdoor one-way
function defined by Goldreich, Goldwasser, and Halevi. In [7], the authors propose a public-key cryp-
tosystem based on the hardness of finding the closest lattice vector to a given vector in a vector space.
The system had the disadvantage that for security parameter k-bits, the key size needed was O(k2)
bits while the running time was O(k*). Ajtai and Dwork (in [1]) proposed a public-key cryptosystem
based on the hardness of finding the shortest vector in a lattice. This system had an even worse relation
between the security parameter and the key-size. In particular, for security parameter of k-bits, the
key size and running time were both O(k*). However, this was the first system that was based on a
hard problem known to have the Worst-case to Average-case connection. In other words, if there was
an efficient algorithm to solve the shortest vector problem on average, then the worst case problem also
admitted an efficient algorithm. Our proposal (using the Pizer graphs) differs from these constructions
in the sense that the lattices are implicitly present, and the translation to the lattice formulation itself
seems to be hard.
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The work of Zémor and Tillich is more closely related to our second construction of the hash function.
They propose using the standard generators for the group SL(2,F2») and doing a walk on the resulting
Cayley graph to define a hash function. In spirit, this is very similar to our approach; however, there
are a few key differences. The first is that we work with the group PSL(2,F,) and the second and
more crucial difference is that we use a set of expanding generators for defining the Cayley graph.
Consequently, the distribution properties of the final vertex in the walk can be analyzed using the
rapid mixing properties of random walks on expanders. A related proposal was also made by Goldreich
[6], where he suggested using expander graphs such as the LPS graph to construct one-way functions.
An interesting application of our scheme is given in a paper of Quisquater and Joye ([14]). The authors
point out that the scheme of Zémor and Tillich has a nice property which they term the concatenation
property: the hash scheme satisfies the following Hash(z|y) = Hash(z) x Hash(y), where z|y refers to
the concatenation of the messages x and y and the product is computed on the group PSL(2, F}). To
satisfy the concatenation property in our scheme, the hash function would have to be designed to always
start at the identity matrix and use the generators as determined by the input string. This property is
used for authenticating sequences, and there is some application to signing video images. We remark
that the concatenation property suggests a possible attack. Indeed, if one can find an element y such
that Hash(y) = 1, then for every input = we have Hash(xz) =Hash(z|y)= Hash(y|z) and the inputs z|y,
y|z, have the same length. To find such an input y could be easy when the girth of the graph is small.
In the LPS graphs, where the hash function has the concatenation property, the girth is essentially as
large as possible and a brute force approach to finding such y, i.e. to finding a short cycle, is infeasible
when the size of the graph is large enough.
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